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Abstract— A necessary capability for humanoid robots is the
ability to stand and walk while rejecting natural disturbances.
Recent progress has been made using sim-to-real reinforcement
learning (RL) to train such locomotion controllers, with ap-
proaches differing mainly in their reward functions. However,
prior works lack a clear method to systematically test new
reward functions and compare controller performance through
repeatable experiments. This limits our understanding of the
trade-offs between approaches and hinders progress. To address
this, we propose a low-cost, quantitative benchmarking method
to evaluate and compare the real-world performance of standing
and walking (SaW) controllers on metrics like command follow-
ing, disturbance recovery, and energy efficiency. We also revisit
reward function design and construct a minimally constraining
reward function to train SaW controllers. We experimentally
verify that our benchmarking framework can identify areas for
improvement, which can be systematically addressed to enhance
the policies. We also compare our new controller to state-of-the-
art controllers on the Digit humanoid robot. The results provide
clear quantitative trade-offs among the controllers and suggest
directions for future improvements to the reward functions and
expansion of the benchmarks.

I. PROBLEM STATEMENT AND RELATED WORK

We consider the problem of producing a controller for
a bipedal humanoid robot that supports the following two
commands: 1) Stand. The robot should stop if moving and
stand in place with two feet on the ground. 2) Walk. The
robot should walk at a specified velocity (direction and
speed) and a specified heading with an important special
case corresponding to rotating in place.

To be useful in practice, a standing and walking (SaW)
controller must be able to reliably switch between different
commands and reject physical disturbances, such as bumps
or terrain features, that may occur in an application.

II. QUANTITATIVE SAW PERFORMANCE BENCHMARK

We propose a reproducible set of benchmarks for quanti-
tatively assessing key aspects of a SaW controller in the real-
world. These metrics quantify the disturbance rejection abil-
ity, accuracy in command following, and energy efficiency.
The benchmark is intended to allow comparison of any SaW
controller, regardless of the method a controller is based on.

A. Disturbance Rejection

Figure 2 shows our impulse application device in the
lab environment. The impulse applicator works by releasing
a weight suspended by magnets, which is automatically
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Fig. 1. We propose a set of metrics with an easy-to-setup testing fixture
and provide quantitative results towards the controller performance in the
real-world. Our proposed RL-based method produces a robust standing-and-
walking controller for the humanoid robot Digit. The learned controller can
handle a set of significant amount of disturbances, such as lateral push at
150N for 500ms shown in A and sagittal push at 200N for 500ms shown in
B. The controller is able to walk, stand, and seamlessly transition between
these two settings.

disconnected after a preset duration. After applying a fixed
duration impulse, the robot is freely able to recover.

Metric 1: Standing Fall Percentage. For each direction
and selected combinations of weight and duration, we com-
pute the metric value over multiple trials. Each trial involves
initializing the robot by issuing a standing command and
then using the device connected in the appropriate direction
to provide the specified impulse weight and duration. The
metric value is the percentage of trials leading to success,
where a trial is successful if the robot does not fall.
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Fig. 2. An impulse is applied to the robot by means of a weight connected
by a rope. Force F is regulated by adding and removing weight. Duration
∆t is regulated by a microcontroller that automatically disconnects the
weight from the rope, after a set amount of time. The rope is always attached
to Digit at the same height of 122 cm.

B. Command Following

Metrics 2 and 3: In-Place Rotation Accuracy. For
certain applications it is useful for a humanoid to be able
to rotate its body to a particular orientation while remaining
in place. To test this we conduct trials where the robot starts
in a standing position in the middle of a 2ft diameter circle,
which is considered the region of zero positional error. The
robot is then given a command to rotate at angular velocity
ωz for ∆t seconds, which ideally should correspond to a
commanded orientation change of θc = ωz ·∆t. We compute
two metrics at the end of the trial: 1) angular error, which is
the difference between the commanded angular rotation and
the actual rotation, and 2) lateral drift, which is measured
as the distance of the furthest foot from the boundary of the
starting circle.

Metric 4: Velocity Accuracy. We consider a simple veloc-
ity tracking test using only basic measurements. Specifically,
we issue a constant velocity command v for duration ∆t,
which should ideally produce a net translation of dc = v ·∆t.
For our current procedure, each trial of the experiments
starts the duration clock when the robot is in a standing
position and then after ∆t seconds the standing command
is issued. The distance traveled is then manually measured
and averaged across trials. By comparing the actual distance
traveled dr to the commanded distance dc, we can quantify
velocity control performance without specialized equipment.

TABLE I
REWARD TERMS

Reward Term Definition Weighting

x, y velocity

{
e−5·(vxy−cxy) if cs
e−5·(vxy−cxy)2 else

0.15, 0.15

Yaw orient. e−300·qd(qyaw,cyaw) 0.1

Roll, pitch orient. e−30·qd(qrp,crp) 0.2

Feet contact


1 if cs
1 if nc,t∗ = 1 for any t∗ ∈ [t − 0.2, t]

0 else
0.1

Base height e−20·|pz−ch| 0.05

Feet airtime

{
1 if cs∑

f∈(l,r)(tair,f − 0.4) ∗ 1td,f else
1.0†

Feet orientation

{
e
−

∑
|rfeet, rp−cfeet,rp| if |cyaw| > 0

e
−

∑
|rfeet, rpy−cfeet,rpy| else

0.05

Feet position

{
e−3·|pfeet−cfeet| if cs
1 else

0.05

Arm e−3·||θarm−carm|| 0.03

Base acceleration e−0.01·
∑

|bxyz| 0.1

Action difference e−0.02·
∑

|at−at−1| 0.02

Torque e−0.02· 1
N

∑
|tmotor|/tmax 0.02

c = a command; cs = standing command; q = a quaternion; p = a
position; b = base acceleration; qd(·) = quaternion distance function;
nc = number of feet in contact with ground; 1td = boolean variable
indicating a touchdown in the current timestep; † = note that the
feet airtime reward is the only sparse reward, therefore the weight is
significantly higher than other terms.

C. Energy Efficiency

Metric 5: Energy Efficiency. More efficient gaits directly
extend operational runtime by conserving battery power.
Additionally, a more efficient gait reduces mechanical wear
from torque and impacts, prolonging hardware lifespan.

III. SAW TRAINING AND REWARD DESIGN

A. Reward Design

Basic Command Following. The first three essential
components in Table I measure how well the current robot
velocities and orientation match the commands. We found
that training with just these components results in a hopping
locomotion behavior, where the robot moves by jumping with
both feet.

Single Foot Contact. To address hopping we have found
multiple approaches that can individually be added to the
above three reward terms to learn to walk instead. We found
that the most reliable and unconstrained way to produce
walking instead of hopping is via the single foot contact
reward, which also does not require tuning.

For non-standing commands, the single foot contact com-
ponent provides a reward of 1 at each time step where only
one foot is in contact with the ground. To allow for some
overlap in the stance and swing phases, we add a grace period
of 0.2 seconds. This means that if single contact occurred
at least once in the last 0.2 seconds, the reward is granted,
otherwise the reward is 0.

For the standing command, this reward component is
a constant of 1, giving no preference for foot contact.
Intuitively, we might expect standing to involve rewarding
double foot contact. However, this is problematic since it



Fig. 3. Disturbance rejection success rates for various humanoid SaW controllers in the x-direction (left) and y-direction (right). Results show that our
Single Contact reward function outperforms competing alternatives. * Results for Single Contact++ are incomplete due to the robot being damaged in
unrelated experiments, noting that experiments for the largest forces were completed before attempting to fill in the rest of the table.

0.0

0.5

1.0

1.5

2.0

xy
 d

rif
t [

m
]

Command following test: turn rate 0.5 rad/s (n=5)
Agility Controller
Clock Based RL Controller
Single Contact RL Controller
Single Contact++ RL Controller

1 5 30
Time Durations [s]

40

30

20

10

0

 e
rro

r [
de

g]

Fig. 4. Command following accuracy for turning in place. Error bars are
standard deviation. Also note that the 30 seconds drift results for Agility
Controller were in some cases helped by the robot tether. It is safe to assume
results without tether would have been closer to the upper end of the error
bar.

penalizes the recovery steps needed to reject disturbances,
as that requires breaking ground contact of at least one of
the feet. Additionally, when transitioning from walking to
standing, requiring double foot contact will cause a policy to
opt for the closest stance position rather than the most stable
one. Thus, to learn standing while avoiding these problems
we opt to implicitly reward standing utilizing existing reward
terms. It turns out that most reward terms will be greater
when a policy stands still with both feet on the ground, than
when it steps in place or only stands on one foot.

No Clocks. While prior work that uses clock-based reward
signals (e.g. [1]) does allow for standing, the nontrivial
question of what to do with the required clock inputs during
standing and transitions remains a challenge. Additionally,
the clock framework incentivizes low foot velocities in
standing mode, which directly impedes disturbance rejec-
tion capabilities. Rather, the above reward function does
not require reference clocks, trajectories or signals of any
sort to learn walking, and allows a policy to control such

Fig. 5. Power consumption for a commanded run of 1 m/s for 10 seconds.
Policies start in standing mode, and end in standing mode. * Note that
results for Single Contact++ RL Controller are missing due to an unrelated
experiment damaging the robot close to submission.

parameters internally. Without such signals we eliminate
the problem of having to engineer the transitions between
standing and walking modes. Additionally for disturbance
rejection, without any references to attain to, the policy is
free to move feet in any way it seems fit to stay upright.

IV. EVALUATION RESULTS

We use our proposed benchmarking procedure to eval-
uate and compare three SaW controllers for the Digit V3
humanoid robot manufactured by Agility Robots: 1) Single
Contact RL. trained using our minimally-constrained SaW
reward function from Table I, 2) Clock Based RL. trained
using a state-of-the-art clock-based [1] reward function, and
3) Agility Controller the manufacturer-provided controller.
The benchmarks reveal unexpected failure modes in the
learning-based controllers, which guided targeted improve-
ments, ultimately resulting in an enhanced controller that
successfully handles all tested disturbances, called the Single
Contact++ RL. The results can be found in Figures 3, 4 and
5.
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