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Abstract— This paper summarizes the practical aspect of
the application of a convex optimization control on the MIT
Humanoid. The hierarchical control framework consists of a
model predictive control (MPC) with reduced-order model,
followed by a reactive whole-body control (WBC) with full-
order model. Our work emphasizes the critical components, in-
cluding automatic differentiation, inverse kinematics and multi-
threading, that enabled successful simulation-to-real transfer to
the hardware. Preliminary experimental results are presented,
including push recovery and stable walking on the treadmill
with a maximum walking speed of up to 0.4 m/s.

I. INTRODUCTION

Model predictive control (MPC) has proven to be one
of the effective optimization-based control methods [1]. Its
efficacy comes from the capability to predict state evolution
over a horizon based on the system model. Reduced order
models such as the Linear Inverted Pendulum [2] is widely
used for humanoid control. In contrast, more complex models
promise higher level of expressiveness. Whole-body MPC
has shown agile and versatile behaviors on legged robots [3],
[4], where the full system dynamics are leveraged. However,
the high computation demand poses numerical challenges to
the available solvers. To tackle this issue, model hierarchy
predictive control (MHPC) [5] proposes a blend of complex
and simple models over the horizon to achieve real-time
control. Recent emergence of data-driven approaches [6]
provides alternative solution for locomotion skill-acquisition.
Although these methods have shown promising results in
quadrupeds, hardware experiments on a full humanoid have
yet to be demonstrated.

Hierarchical control architecture consisting of models with
different complexity strikes a balance between model fi-
delity and computational load. In particular, the two-level
control structure with MPC and whole-body control (WBC)
has proven to be effective on legged robots [7], [8]. This
framework is amenable for real-time execution since each
sub-problem can be transcribed to a convex quadratic pro-
gram (QP), which can be solved efficiently. Nevertheless,
transferring such control architecture to real hardware still
poses considerable challenges.

This paper addresses the implementation issues of the
hierarchical convex optimization control framework on the
MIT Humanoid platform. Aside from the optimal control
modules, we focus on the auxiliary components that facilitate
the transfer from simulation to the real hardware. Using this
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Fig. 1. The control architecture of the MIT Humanoid. A finite state
machine takes in the user command and specifies the gait phases and
reference states; the convex MPC tracks the reference state at 250 Hz by
leveraging multi-threading; the MPC solution is taken as reference by the
WBC, which computes the feedforward joint torque at 500 Hz; The inverse
kinematic module calculates the joint PD target from the desired torso and
swing foot poses; the state estimator produces robot state based on sensor
readings from joint encoders and the IMU. The QP problems are solved
using the open-source solver qpSWIFT [9]. On the right, the MIT Humanoid
is recovering from external pushes while walking

control framework, the MIT Humanoid is able to recover
from external pushes while walking, as shown in Fig. 1.

II. CONVEX OPTIMIZATION CONTROL

A. Convex Model Predictive Control

The control of the MIT Humanoid [10] is posed as an
optimal control problem (OCP). The robot is modeled as a
single rigid body (SRB) since most of its mass is lumped at
the torso.

miminize
x,u

ℓN (xN ) +

N−1∑
k=0

ℓk(xk,uk)

subject to xk+1 = Axk +Buk + d

xk ∈ X,uk ∈ U,∀k = 0, ..., N − 1

xt = x(t),

(1)

where xt ∈ Rn is the SRB state; u ∈ Rm is the ground
reaction force vector. ℓN and ℓk are the quadratic terminal
and stage costs, respectively; X and U are the admissible
state and control sets, respectively. The vector d and Jacobian
matrices A and B of the linear dynamics are constructed by
linearizing around the current SRB state xt.

B. Whole Body Control

A whole-body control (WBC) is employed as the reactive
controller to exploit the full-order dynamics of the humanoid.
Its objective includes centroidal state tracking, swing foot
tracking and angular momentum minimization. The WBC
can reason about the dynamic effects of moving limbs, which



is not captured by the SRB model in the MPC. The readers
are referred to [8] for more detail.

III. IMPLEMENTATION

A. Automatic Differentiation

Automatic differentiation (AD) [11] is useful for calcu-
lating the Jacobian matrices of the constraints of an MPC
problem (1). Compared with matrix indexing in the manual
construction of Jacobian matrices, AD provides high flex-
ibility of modifying the MPC formulation with minimum
overhead. In this work, we used the package autodiff [12]
with forward mode for the construction of (1).

B. Inverse Kinematics

Inverse kinematics (IK) control serves as a complementary
component to the MPC-WBC control. MPC solution is the
contact wrench and WBC solution is the joint torque, both of
which are control inputs to the second-order system. In swing
foot tracking, the gait timing is sensitive to the swing foot
height tracking error. Relying solely on the WBC requires
high gain, which compromises other task objectives. By
leveraging the IK, the swing tracking performance can be
improved with low WBC swing-tracking gain, improving the
numerical stability of the optimization. In this work, we use
numerical IK based on the Levenberg–Marquardt Algorithm
(LMA) [13].

C. Multi-threading

Solving the MPC-QP requires intensive computational
resources, which becomes the system performance bottle-
neck. We employed multi-threading to exploit the available
computing resources by using a threadpool [14]. Each cycle
initiates an optimization task to available instances, which
do not share memory. The most recently solved optimization
solution is used for control.

IV. EXPERIMENT RESULTS

A. Walking

The convex optimization control framework enabled the
MIT Humanoid to walk on a treadmill with a maximum
walking speed of 0.4 m/s. As presented in Fig. 2 (a),
the ground reaction force generated by MPC is modified
by the WBC to account for the full-order dynamics. The
combination of WBC swing tracking and IK control (Section
III-B) enabled small swing tracking error, as shown in Fig. 2
(b). Fig. 2 (c) shows that the maximum knee torque for flat
ground walking is 45 Nm, way below the maximum knee
motor torque.

V. CONCLUSION AND FUTURE WORK

This paper presents the practical application of convex
optimization control on the MIT Humanoid. Our work fo-
cuses on the critical components such as AD, IK and multi-
threading for the successful implementation of the controller
on the hardware platform. Preliminary walking and push
recovery results on the MIT Humanoid are presented. Future
work involves extending this control framework to achieve
omni-directional walking on various terrains.
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Fig. 2. MIT Humanoid Walking Experiment Data. (a) Right heel vertical
force, solved from MPC (dashed) and WBC (solid); (b) Right heel swing
height, measured (dashed) and desired (solid); (c) Right knee torque,
commanded (solid) and actual (dashed); Center of mass velocity in the
x-direction (dashed) and y-direction (solid).
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